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The two-dimensional problem of the current distribution on the
surface of permeable electrodes contiguous with a stream of incom-
pressible medium with Hall effect is considered. An electrically con-
ducting medium with the same physical properties as those of the
main stream is pumped in (out) through the electrodes.

This problem was solved in [1] for one particular case when the
electrodes are impermeable. It was established that due to the Hall
effect in magnetohydrodynamic channels the current is distributed non-
uniformly on the electrodes; for values of the Hall parameter of the
order of several units or greater, the current flows into an isotropically
conducting medinm mainly from a small porrion on the edge of the
electrode. It was alsc noted that this phenomenon creates unfavorable
conditions for the operation of electrodes in magnetohydrodynamic
devices.

It is shown in what follows that the current distribution on the
electrodes may be controlled, and in particular made more uniform,
by injecting an electrically conducting medium.

1. Suppose we have an infinite plane magnetohydro-
dynamic channel with segmented electrodes with di-

mensions small compared to the width of the channel.

Now, since the problem is to find the current distri~
bution on the electrodes only, it is quite sufficient to
investigate the behavior of the current on the elec-
trodes of just one wall and neglect the influence of the
other walls. Such an assumption does not introduce
any appreciable error into the results and simplifies
the solution of the problem considerably.

Making this simplification, we shall assume that
the stream of conducting medium v(u(x,y), v(x,y),0),
having isotropic conductivity, fills the lower half-
plane, and that the real axis coincides with the direc-
tion of the wall (Fig, 1). The segments agbyr k=1, 2,

..,p) in Fig. 1 indicate the portions of the electrodes
which come in contact with the stream of medium,
while the remaining portion of the real axis Ox rep-
resents the boundary of the insulating walls. It is
assumed that the external magnetic field H(0,0,H,)
is uniform in the lower half-plane, and that the mag-
netic self-field of the currents considered in the me-
dium is small and may be neglected.

The electrodes of the other wall of the channel are
removed to an infinitely distant point.

We have the following system of equations for find-
ing the currents in the lower half-plane:
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Here j4(x,¥), jy(x,y) are the components of the
current vector, ¢(X,y) is the potential of the elec-
trostatic field, o is the electrical conductivity, wr

is the Hall parameter, and ¢ and wr are constants.

Assuming that the properties of the materials of
which the electrodes and insulating walls are made
are perfect, we obtain the boundary conditions for
which the system (1.1) must be solved,

jx+m17jy=—i——cHov(x), o LzLb, at y=0
by <z <y, at y=0
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At infinity there are current sources or sinks.

On the assumptions which have been made it follows
from system (1.1) that the electric current field is
solenoidal and irrotational, and that consequently we
may introduce the complex potential of the electric
current F(z) by the formulas
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In (1.3) P(x,y) is the potential function, and Q(x, y)
is the electric current function; j(z) is the complex
electric current.

Determining the currents in the half-plane Im z <
< 0 now reduces to the following boundary problem for
the complex current:

Re {(1 + ior)j(z)} = @v(x) on L,

Imj(z) =0 on L. (1.4)

Here L' indicates all the segments g b, k=1, ...,
p), and L" the remaining part of the real axis.

In view of the initial assumptions j(z) is charac-
terized at infinity by the expansion

j@ =24 T g o

The boundary problem (1.4) may easily be solved
by reducing it to a generalized linear boundary value
problem [2, 3]. In order to do this we make an ana-
lytic continuation of the function j(z) into the upper-half
plane and impose the condition that v(x) should satisfy
a Holder condition on L'. We shall designate the upper
and lower half-planes by S* and S~, and in passing
around the real axis we shall take the positive direc-
tion to be that which leaves the region S* on the left.
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From (1.4) we then obtain the following generalized
linear boundary value problem {(Riemann problem):
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The solution of the boundary value problem (1.5),
which vanishes at infinity, in the class of functions
unbounded (but integrable) at the ends of the electrodes
has the form
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For the function under the product sign in (1.6) we
choose the branch which is characterized for large
iz| by the expansion
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The components of the electric current jy, jy on the
electrodes are found from the Sokhotskii-Plemel
formula

jolr) = LT

R . .
- SHel) l H (2 — @)™ (@ — by

c(1 + o9
wtsH e Y, v () dt
X{nc(1+$21¢)§ln(t"‘a) ( — by T’:;+
1 03 !
+(m'(01x" ;f’_t:,;l_mchy)}* (1.8)
. L' ¥
Julz) = ———~(-z—)——21—-—-£c—)_
SH| et e |
= :)(;-‘l—o:)’(:?)) ——1[[(1‘_“ ! (z bk) /”lx
7 SH, /,+g e | v (2) dF
Xi“c(i_*_wz.cz) lH(t———a) . ) .4 t—x
+ C’“’H+C*”"’+-~~+0pl (1.9)
Vi + wir? I
S+
& 54 b aﬁ‘zy by o, 9:_2
oH, IS 5"
Fig. 1

The constants C; (k =1,2,...,p) are determined
uniquely from the linear system of p equations
bk .
S Ju(@de=1I, (k=1,2,..., p)

ag

(1.10)

where I is the total current flowing through the k-th
electode.

In the solution obtained jy and j, go to an infinity of order less
than unity at the points gy and by. Physically, these singularities
indicate a concentration of currents at the ends of the electrodes and
in their neighborhood. Other solutions may also be constructed which
remain bounded close to any previously specified ends of the elec-
trodes (where they necessarily vanish). In concrete cases the choice
of the required solution is determined on the basis of additional phy-
sical conditions and assumptions. In particular, we must take into
account the electrical circuit joining the electrodes, their relative
positioning and dimensions, the law of normal velocity distribution
on the electrodes, and other conditions. The general number of all
possible solutions is equal to 22P [2,3].
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. 2. We shall make a detailed examination of the
particular case when a single electrode of finite di-
mensions

ab=2l, —I<z<<ifory=0

is situated on the wall.

All solutions, the number of which is equal to 22,
are now determined only by the conditions governing
the injection of conducting fluid through the electrode.

- We shall consider these solutions and deduce the
conditions which the injection velocity at the electrode
should satisfy in this case.

(a) Solution unbounded at both ends of the electrode.
In the absence of pumping (v(x) = 0 on ah) a spreading
out of the current flowing through the electrode in the
region S~ will be accompanied by a current concentra-
tion at the ends of the electrodes @ and b. The current
distribution on the electrode is found on the basis of
the solution already obtained (1.8), (1.9),
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The constant C is determined from the condition
(1.10)
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Formulas (2.,1) —(2.3) show the influence of anisotropic conductivity
of the medium on the current distribution at the electrode. As the
parameter wr increases, the current density increases at the edge of
the electrode near the end a and decreases correspondingly at the end
b. This effect is illustrated in Fig. 2, where curves j* = Trjy(x)/l are
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constructed for four values of the parameter wr= 0,1,3 and 10, while
for simplicity in the calculations it was assumed that{= 1,
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If v(x,0) = 0 at the electrode, then instead of (2.2)
we have
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We omit the formula for the tangential current com-
ponent at the electrode here and in what follows; if
necessary it may easily be written down using the
boundary condition (1.2) or the Sokhotskii-Plemel
formula.

In accordance with (1.6), the current distribution
next to the electrode is determined from the following
expression:
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(b) Solution bounded close to end 2 and unbounded
cloge to end b, In order that the current j, (x), de~
termined by formula (2.4), should take bounded values
close to end a of the electrode, including the point a,
it is clear that the integral equation

—GH“S (44) "yt = 1Y TT o
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must be satisfied.

This relation determines how the conducting medium
should be pumped in (or out) over the section ab as a
function of the size and direction of the total current
flowing through the electrode, and of other physical
properties of the stream.

Further, taking into account the identity
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and the condition (2.6), we obtainfrom (2.4) the current

distribution at the electrode and in its neighborhood
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It is clear that close to the end a of the electrode
the current is bounded and at the point « itself takes
the value zero.

To illustrate the formulas obtained we shall con-
sider an example. We shall suppose that v(x) maintains
a constant value over the entire length of the electrode
and introduce the notation

LoHw(2) = Aa=const, —i1<s<i at y=0. (2.10)

Then taking into account the fact that
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we find from (2.6) that
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The integrals in (2.8) and (2.9) are calculated with
the help of Cauchy's theorem of residues. When the
necessary transformations and calculations are car-
ried out, we finally obtain
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Curves of j* = mjy(x)/1 are constructed in Fig. 3 for four values of
wr=0,1,8 and 10 using this formula. Comparing these with similar
curves in Fig. 2, it may be noted that when the conducting medium
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is pumped in, the given form of distribution of the normal current
component at the electrode is evened out. This effect is strengthened
as the parameter wr increases, especially in those cases when the non-
uniformity of the current distribution due to the anisotropy of the con-
ductivity of the stream is particularly large. This is distinetly visible
if Fig. 4 is considered, where the curves of j* are represented by solid
lines for case (a) when there is no pumping, and by dotted lines for
case (b).

(c) Solution bounded close to end b and unbounded
close to end a. All the discussions and calculations in
this case are just the same as in the previous case,
and so we shall give only the final formulas and con-
fine ourselves to brief observations.

The condition which must now be obeyed by the in-

jection rate at the electrode is as follows:
1
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The current distribution at the electrode and in its
neighborhood is described by the formulas
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Just as before, for the sake of an example, we
shall suppose that the velocity at the electrode is con-
stant along its entire length and we shall introduce the
notation

%O’HOU (z) = Ap =const, —I<<z <<l at y=0. (2.18)
Then from (2.15)—(2.17) we obtain
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The curves for the current j* = wjy(x)/l are given in Fig. 5. By
examining them we see that pumping the conducting medium through
the electrode at a constant velocity v(x) = Apc/oH, achieves the
opposite effect from that obtained previously. The nonuniformity of
current distribution at the electrode increases, as is clear by comparing
the curves in Figs, 2 and 5.

The different current distributions at a permeable electrode in the
solutions given above are explained by the fact that the pumping in
or out of conducting medium through the elecirode along the channel
wall induces an electromotive force which is directed either against
the longitudinal Hall emf or in the same direction as it. In the first
case there is compensation of the longitudinal Hall emf as a result
of which the electric current flows more uniformly through the porous
electrode than through a continuous electrode under the same influence
of the Hall effect. This case corresponds to the solution considered
in paragraph (b). In the opposite case the longitudinal Hall emf com-
bines with the emf induced by the pumping, and the nonuniformity of
current distribution along the electrode is enhanced. This result is
obtained in paragraph (c).

(d) Solution bounded close to both ends of the elec~
trode. In this solution the current density jy &) must

(—i<z<<l). (2.20)

jy(@) =

assume bounded values close to the two ends of the
electrode aand b including the ends themselves. Clearly,
conditions (2.6) and (2.15) must in this case be ful-
filled simultaneously. Addingthem, we obtainthe single
condition
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The solution itself has the form
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It follows immediately from (2.21) that it is impos-
sible to obtain a current distribution bounded close to
both ends of the electrode if v(x) maintains a constant
value over the whole length of the electrode. In all
three conditions (2.6), (2.15), and (2.21) the normal
velocity at the electrode appears in the integrand, and
so for each of the solutions considered there are many
functions v(x) for which they are satisfied.

In conclusion we note the similarity which exists between the
problems of the electrodynamics of a continuous medium which have
been considered, and contact problems in elasticity theory. The cur-
rent distribution along the electrode has the same form as the pres-
sure distribution in an elastic body under a rigid die. We have in mind
the plane contact problems of elasticity theory in the presence of
frictional forces considered in monographs [4,5] .
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